Sains Malaysiana 54(10)(2025): 2567-2576

http://doi.org/10.17576/jsm-2025-5410-18

 

Development of Melioidosis Mapping in Malaysia using Various Relative
Risk Models

(Pembangunan Pemetaan Melioidosis di Malaysia menggunakan Pelbagai Model Risiko Relatif)

 

NAZRINA BINTI AZIZ1,*, OOI PEI WEN1, IJLAL BINTI MOHD DIAH2 & WAQAR HAFEEZ3

 

1School of Quantitative Science, Universiti Utara Malaysia, 06010 Sintok, Kedah, Malaysia
2Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris,
35900 Tanjung Malim, Perak, Malaysia
3Haide College, Ocean University of China, Qingdao, Shandong, China

 

Received: 12 March 2025/Accepted: 11 August 2025

 

Abstract

Melioidosis is a significant infectious disease caused by Burkholderia pseudomallei, which is commonly found in soil and water. The disease is highly endemic in Malaysia, with an estimated 2000 deaths annually, surpassing fatalities from dengue and tuberculosis. Despite its severity, understanding the geographical distribution of melioidosis remains a challenge. In this study, the melioidosis data from 2014 to 2023 in Malaysia were analyzed using Excel and WinBUGS software. Relative risk, a measure comparing the risk in one group to another, was used to map melioidosis risk geographically by using ArcGIS. Four models - Susceptible-Infected-Recovered (SIR), Standardized Morbidity Ratios (SMR), Poisson-Gamma, and Besag-York-Mollie (BYM) - were applied to assess their effectiveness. Mapping highlighted consistently higher relative risk in northern Malaysia, particularly in Perlis and Kedah across multiple models while most other states remained in the very low risk category. Besides, the model performance was compared using the Deviance Information Criterion (DIC) to assess goodness of fit. Findings suggest the Poisson-Gamma model is most suitable and reliable for accurate disease risk mapping to better epidemiological surveillance and targeted public health interventions as it accounts for local variations while maintaining computational efficiency in Malaysia.

 

Keywords: Disease mapping; epidemiology; melioidosis; relative risk estimation; statistical models

 

Abstrak

Melioidosis ialah penyakit berjangkit yang serius yang disebabkan oleh Burkholderia pseudomallei, yang sering ditemui dalam tanah dan air. Penyakit ini adalah endemik di Malaysia dengan anggaran 2000 kematian setiap tahun, melebihi jumlah kematian akibat denggi dan tuberkulosis. Walaupun impaknya besar, pemetaan taburan geografi melioidosis masih menjadi cabaran. Dalam kajian ini, data melioidosis dari tahun 2014 hingga 2023 dianalisis menggunakan perisian Excel dan WinBUGS. Risiko relatif, ukuran membandingkan risiko dalam satu kumpulan dengan kumpulan lain digunakan untuk memetakan risiko melioidosis secara geografi dijana menggunakan ArcGIS. Empat model - Susceptible-Infected-Recovered (SIR), Standardized Morbidity Ratios (SMR), Poisson-Gamma, dan Besag-York-Mollie (BYM) - digunakan untuk menilai ketepatannya. Hasil pemetaan menunjukkan risiko relatif yang lebih tinggi dan tekal di utara Malaysia, khususnya di Perlis dan Kedah merentasi pelbagai model manakala kebanyakan negeri lain kekal dalam kategori risiko sangat rendah. Selain itu, prestasi model dibandingkan dengan Deviance Information Criterion (DIC) untuk menilai kesesuaian. Hasil kajian menunjukkan bahawa model Poisson-Gamma memberikan anggaran risiko relatif yang paling sesuai untuk pemetaan risiko melioidosis dalam membantu meningkatkan pemantauan epidemiologi dan strategi intervensi kesihatan awam yang lebih berkesan kerana ia mengambil kira variasi tempatan sambil mengekalkan kecekapan pengiraan.

 

Kata kunci: Anggaran risiko relatif; epidemiologi; melioidosis; model statistik; pemetaan penyakit

 

REFERENCES

Ahlmann-Eltze, C. 2021. Gamma-Poisson Distribution. https://const-ae.name/post/2021-01-24-gamma-poisson-distribution/gamma-poisson-reference/

Aidalina Mahmud & Poh Ying Lim. 2020. Applying the SEIR Model in forecasting: The COVID-19 trend in Malaysia: A preliminary study. medRxiv. https://www.medrxiv.org/content/10.1101/2020.04.14.20065607v1

Andrade, C. 2015. Understanding relative risk, odds ratio, and related terms: As simple as it can get. J. Clin. Psychiatry 76(7): e857-861. 

Anna, N. 2020. The standardised mortality ratio and how to calculate it. Students 4 Best Evidence. https://s4be.cochrane.org/blog/2020/08/26/the-standardised-mortality-ratio-and-how-to-calculate-it/

Besag, J., York, J. & Mollié, A. 1991. Bayesian image restoration, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics 43: 1-20.

Cleveland Clinic. 2022. Melioidosis. Cleveland Clinic. https://my.clevelandclinic.org/health/diseases/24051-melioidosis

Currie, B.J., Ward, L. & Cheng, A.C. 2010. The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year Darwin prospective study. PLoS Neglected Tropical Diseases 4(11): e900.  https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0000900

Department of Statistics Malaysia. 2024. The Population of Malaysia. OpenDOSM. https://open.dosm.gov.my/dashboard/population

FasterCapital. 2024. Poisson Distribution: How to Use the Poisson Distribution to Model the Probability Distribution of Investment Estimation. https://fastercapital.com/content/Poisson-Distribution--How-to-Use-the-Poisson-Distribution-to-Model-the-Probability-Distribution-of-Investment-Estimation.html#Advantages-and-Disadvantages-of-Using-the-Poisson-Distribution

Fong, J.H., Pillai, N., Yap, C.G. & Jahan, N.K. 2021. Incidences, case fatality rates and epidemiology of melioidosis worldwide: A review paper. Open Access Library Journal 8: e7537. https://www.scirp.org/journal/paperinformation?paperid=110072

Hassan, M.R., Pani, S.P., Peng, N.P., Voralu, K., Vijayalakshmi, N., Mehanderkar, R., Aziz, N.A. & Michael, E. 2010. Incidence, risk factors and clinical epidemiology of melioidosis: A complex socio-ecological emerging infectious disease in the Alor Setar region of Kedah, Malaysia. BMC Infect Dis. 10: 302. doi: 10.1186/1471-2334-10-302

Institut National D’Etudes Demographiques (INED). 2024. Standardized Mortality Rate. https://www.ined.fr/en/glossary/standardized-mortality-rate/

Jainsankar, R. & Ranjani, M. 2024. Spatial disease mapping using the Poisson-Gamma model. Journal of Future Sustainability 4: 101-106.  doi: 10.5267/j.jfs.2024.5.004

Kelley, L.C. & Breeze, R.G. 2005. Investigation of Suspicious Disease Outbreaks. In Microbial Forensics. pp. 187-212. Academic Press. https://www.sciencedirect.com/topics/medicine-and-dentistry/disease-mapping

Koch, T. 2022. Disease mapping and innovation: A history from wood-block prints to Web 3.0. Patterns 3(6): 100507. doi: 10.1016/j.patter.2022.100507

Lawson, A.B. 2018. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. 3rd ed. Boca Raton: CRC Press.

Lee, P.C. 2014. Melioidosis. Myhealth Ministry of Health Malaysia. http://www.myhealth.gov.my/en/melioidosis-2/

Lee, S.Y. 2007. Bayesian analysis of mixtures structural equation models with missing data. Handbook of Latent Variable and Related Models. North-Holland. pp. 87-107.

Li, Y., Yu, J. & Zeng, T. 2020. Deviance information criterion for latent variable models and misspecified models. Journal of Econometrics 216(2): 450-493. https://doi.org/10.1016/j.jeconom.2019.11.002

Liberto, D. 2022. Hazard rate: Definition, how to calculate, and example. Investopedia. https://www.investopedia.com/terms/h/hazard-rate.asp

Limmathurotsakul, D. & Peacock, S.J. 2011. Melioidosis: A clinical overview. British Medical Bulletin 99: 125-139. doi:10.1093/bmb/ldr007

Limmathurotsakul, D., Golding, N., Dance, D.A., Messina, J.P., Pigott, D.M., Moyes, C.L., Rolim, D.B., Bertherat, E., Day, N.P., Peacock, S.J. & Hay, S.I. 2016. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nature Microbiology 1(1): 15008. doi: 10.1038/nmicrobiol.2015.8

Litton, E., Guidet, B. & de Lange, D. 2020. National registries: Lessons learnt from quality improvement initiatives in intensive care. J. Crit. Care 60: 311-318. https://www.sciencedirect.com/topics/medicine-and-dentistry/standardized-mortality-ratio

Liu, L., Gee, J. & David, B. 2024. Melioidosis. Centers for Disease Control and Prevention. https://wwwnc.cdc.gov/travel/yellowbook/2024/infections-diseases/melioidosis#agent

Luque-Fernandez, M.A. 2018. Introduction to Spatial Epidemiology Analyses and Methods. Instituto de Investigacion Biosanitaria (ibs.GRANADA) chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://scholar.harvard.edu/files/malf/files/spepi.pdf

Maryam Ahmed Alramah, Nor Azah Samat & Zulkifley Mohamed. 2019. Mapping lung cancer disease in Libya using Standardized Morbidity Ratio, BYM Model and Mixture Model, 2006 to 2011: Bayesian epidemiological study. Sains Malaysiana48(1): 217-225 http://dx.doi.org/10.17576/jsm-2019-4801-25

Melikechi, O., Young, A.L., Tang, T., Bowman, T., Dunson, D. & Johndrow, J. 2022. Limits of epidemic prediction using SIR models. J. Math. Biol. 85(4): 36. doi: 10.1007/s00285-022-01804-5 

Melioidosis.info. 2024. Cases Information. https://www.melioidosis.info/info.aspx?pageID=107

Moraga, P. 2019. Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. New York: Chapman & Hall. https://www.paulamoraga.com/book-geospatial/sec-arealdatatheory.html

Nathan, S., Chieng, S., Kingsley, P.V., Mohan, A., Podin, Y., Ooi, M.H., Mariappan, V., Vellasamy, K.M., Vadivelu, J., Daim, S. & How, S.H. 2018. Melioidosis in Malaysia: Incidence, clinical challenges, and advances in understanding pathogenesis. Trop. Med. Infect. Dis. 3(1): 25. doi: 10.3390/tropicalmed3010025

Nicholls, A. 2020. The Standardized mortality ratio and how to calculate it. https://s4be.cochrane.org/blog/2020/08/26/the-standardised-mortality-ratio-and-how-to-calculate-it/

Phillips, E.D. & Garcia, E.C. 2024. Burkholderia pseudomallei. Trends in Microbiology 32(1): 105-106. https://www.cell.com/trends/microbiology/fulltext/S0966-842X(23)00205-6

Puthucheary, S.D. 2009. Melioidosis in Malaysia. Med. J. Malaysia 64(4): 266-274.

Shaktawat, Y.S. 2020. What is ArcGIS? https://doc.arcgis.com/en/arcgis-online/get-started/what-is-agol.htm

Sia, T.L.L., Mohan, A., Ooi, M.H., Chien, S.L., Tan, L.S., Goh, C., Pang, D.C.L., Currie, B.J., Wong, J.S. & Podin, Y. 2021. Epidemiological and clinical characteristics of melioidosis caused by gentamicin-susceptible Burkholderia pseudomallei in Sarawak, Malaysia. Open Forum Infect Dis. 8(10): ofab460. doi: 10.1093/ofid/ofab460. Erratum in Open Forum Infect Dis. 9(2): ofab653. doi: 10.1093/ofid/ofab653 

Trejo, I. & Hengartner, N.W. 2022. A modified susceptible-infected-recovered model for observed under-reported incidence data. PLoS ONE 17(2): e0263047. doi: 10.1371/journal.pone.0263047

University of California Santa Cruz (UC Santa Cruz). (n.d.). DIC: Deviance Information Criterion. https://ams132-winter17-01.courses.soe.ucsc.edu/home.html

 

*Corresponding author; email: nazrina@uum.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous